Welcome to today’s tutorial on IJMB Mathematics Past Questions or JUPEB candidates. In this session, we’ll solve some important past questions focusing on trigonometry and quadratic equations. Grab your calculators and writing materials – let’s dive into two likely exam questions that could easily appear in your next paper.
You can watch the full class in the video below:
Question 1: Solve When Given sec θ = 25/24
Problem Statement:
Given that: secθ=2524\sec \theta = \frac{25}{24}secθ=2425
Find the value of: cotθ+cosθ\cot \theta + \cos \thetacotθ+cosθ
Step-by-Step Breakdown:
- Recall trigonometric identities:
- secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}secθ=cosθ1
- cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta}cotθ=tanθ1
- Since secθ=2524\sec \theta = \frac{25}{24}secθ=2425, then:
cosθ=1secθ=2425\cos \theta = \frac{1}{\sec \theta} = \frac{24}{25}cosθ=secθ1=2524
Using the identity: cosθ=adjacenthypotenuse⇒adjacent=24,hypotenuse=25\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} \Rightarrow \text{adjacent} = 24, \text{hypotenuse} = 25cosθ=hypotenuseadjacent⇒adjacent=24,hypotenuse=25
- Use Pythagoras’ Theorem to find the opposite side:
hypotenuse2=opposite2+adjacent2⇒252=x2+242⇒625=x2+576⇒x2=49⇒x=7\text{hypotenuse}^2 = \text{opposite}^2 + \text{adjacent}^2 \Rightarrow 25^2 = x^2 + 24^2 \Rightarrow 625 = x^2 + 576 \Rightarrow x^2 = 49 \Rightarrow x = 7hypotenuse2=opposite2+adjacent2⇒252=x2+242⇒625=x2+576⇒x2=49⇒x=7
So, the opposite side is 7.
- Find tanθ\tan \thetatanθ:
tanθ=oppositeadjacent=724⇒cotθ=1tanθ=247\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{7}{24} \Rightarrow \cot \theta = \frac{1}{\tan \theta} = \frac{24}{7}tanθ=adjacentopposite=247⇒cotθ=tanθ1=724
- Recall earlier:
cosθ=2425\cos \theta = \frac{24}{25}cosθ=2524
Add both values:
cotθ+cosθ=247+2425\cot \theta + \cos \theta = \frac{24}{7} + \frac{24}{25}cotθ+cosθ=724+2524
- Find LCM of 7 and 25 = 175
24×25+24×7175=600+168175=768175≈4.39⇒4.4\frac{24 \times 25 + 24 \times 7}{175} = \frac{600 + 168}{175} = \frac{768}{175} \approx 4.39 \Rightarrow \boxed{4.4}17524×25+24×7=175600+168=175768≈4.39⇒4.4
Question 2: Find α−β\alpha – \betaα−β from a Quadratic Equation
Given Equation: x2−5x+6=0x^2 – 5x + 6 = 0x2−5x+6=0
Find: α−β\alpha – \betaα−β
Step-by-Step Breakdown:
- Factor the quadratic:
x2−5x+6=0⇒(x−2)(x−3)=0⇒x=2 or x=3x^2 – 5x + 6 = 0 \Rightarrow (x – 2)(x – 3) = 0 \Rightarrow x = 2 \text{ or } x = 3×2−5x+6=0⇒(x−2)(x−3)=0⇒x=2 or x=3
So:
- α=3\alpha = 3α=3
- β=2\beta = 2β=2
- Subtract:
α−β=3−2=1\alpha – \beta = 3 – 2 = \boxed{1}α−β=3−2=1
Even if reversed (i.e., β−α=2−3\beta – \alpha = 2 – 3β−α=2−3), the answer would be −1-1−1, but the magnitude remains 1 if only difference is asked.
Watch more educational videos and past questions: https://youtube.com/@allcbts
Summary & Key Tips
- Use trigonometric identities to rewrite unknowns in solvable form.
- Always draw a triangle to relate adjacent, opposite, and hypotenuse.
- Pythagoras’ Theorem is critical for most trigonometry questions.
- Factorization is the fastest way to solve most quadratic expressions.
- Always double-check your roots before using them in further calculations.
Related Videos:
- 60 Most Likely SAT Writing and Language Questions
- NECO Chemistry Questions and Answers for 2025
- NECO 2025 Economics Likely Questions and Answers
- Understanding Waves and Properties in Physics
- JUPEB Mathematics Questions and Answers
SEO-Friendly Keywords
#MBMath2025, #JUPEBMathematics, #TrigonometrySolved, #QuadraticEquationTips, #CotAndCos, #MathsTutorialNigeria, #WAECPrep, #NECO2025, #IJMBMathSupport, #SolveWithAllCBTs, #PastQuestionsMath, #HowToSolveQuadratics, #AllCBTsYouTube, #MathExamTips