Welcome to today’s JUPEB Mathematics tutorial from AllCBTs!
In this session, we’ll tackle some of the most examinable JUPEB questions — including determinants, surds, and complex number manipulation. These are topics that students often find tricky but are guaranteed to show up in the JUPEB exam.
So grab your writing materials and calculator, and let’s begin!
You can watch the full class in the video below:
Question 1: Find the Non-Zero Negative Value of xxx
Problem:
Solve for the non-zero negative value of xxx that satisfies the determinant equation of the matrix: ∣x101x101x∣=0\begin{vmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & x \end{vmatrix} = 0x101×101x=0
Solution:
To find the determinant, expand the 3×3 matrix: Det=x(x⋅x−1⋅1)−1(1⋅x−1⋅0)+0(1⋅1−x⋅0)\text{Det} = x(x \cdot x – 1 \cdot 1) – 1(1 \cdot x – 1 \cdot 0) + 0(1 \cdot 1 – x \cdot 0)Det=x(x⋅x−1⋅1)−1(1⋅x−1⋅0)+0(1⋅1−x⋅0) =x(x2−1)−(x)+0=x3−x−x=x3−2x= x(x^2 – 1) – (x) + 0 = x^3 – x – x = x^3 – 2x=x(x2−1)−(x)+0=x3−x−x=x3−2x
Set it to 0: x3−2x=0⇒x(x2−2)=0x^3 – 2x = 0 \Rightarrow x(x^2 – 2) = 0x3−2x=0⇒x(x2−2)=0
Solving this:
- x=0x = 0x=0
- x2=2⇒x=±2x^2 = 2 \Rightarrow x = \pm \sqrt{2}x2=2⇒x=±2
Non-zero negative value: −2\boxed{-\sqrt{2}}−2
Question 2: Find the Determinant of the Matrix ZZZ
Matrix: Z=[233410140]Z = \begin{bmatrix} 2 & 3 & 3 \\ 4 & 1 & 0 \\ 1 & 4 & 0 \end{bmatrix}Z=241314300
Solution:
Use the cofactor expansion or Sarrus’ Rule: Det=2(1⋅0−0⋅4)−3(4⋅0−0⋅1)+3(4⋅4−1⋅1)\text{Det} = 2(1 \cdot 0 – 0 \cdot 4) – 3(4 \cdot 0 – 0 \cdot 1) + 3(4 \cdot 4 – 1 \cdot 1)Det=2(1⋅0−0⋅4)−3(4⋅0−0⋅1)+3(4⋅4−1⋅1) =2(0)−3(0)+3(16−1)=0+0+3(15)=45= 2(0) – 3(0) + 3(16 – 1) = 0 + 0 + 3(15) = \boxed{45}=2(0)−3(0)+3(16−1)=0+0+3(15)=45
Correct Option: D. 45
Question 3: Simplify
(1+31+i)2\left(1 + \frac{3}{1 + i}\right)^2(1+1+i3)2
Where i=−1i = \sqrt{-1}i=−1
Step-by-Step:
- Multiply numerator and denominator by the conjugate of the denominator:
31+i⋅1−i1−i=3(1−i)(1+i)(1−i)=3−3i1−(−1)=3−3i2\frac{3}{1 + i} \cdot \frac{1 – i}{1 – i} = \frac{3(1 – i)}{(1 + i)(1 – i)} = \frac{3 – 3i}{1 – (-1)} = \frac{3 – 3i}{2}1+i3⋅1−i1−i=(1+i)(1−i)3(1−i)=1−(−1)3−3i=23−3i
- Add 1:
1+3−3i2=2+3−3i2=5−3i21 + \frac{3 – 3i}{2} = \frac{2 + 3 – 3i}{2} = \frac{5 – 3i}{2}1+23−3i=22+3−3i=25−3i
- Now square:
(5−3i2)2=(5−3i)24\left(\frac{5 – 3i}{2}\right)^2 = \frac{(5 – 3i)^2}{4}(25−3i)2=4(5−3i)2
- Expand numerator:
(5−3i)2=25−30i+9i2=25−30i−9=16−30i(5 – 3i)^2 = 25 – 30i + 9i^2 = 25 – 30i – 9 = 16 – 30i(5−3i)2=25−30i+9i2=25−30i−9=16−30i
- Final answer:
16−30i4=4−7.5i\frac{16 – 30i}{4} = \boxed{4 – 7.5i}416−30i=4−7.5i
Watch more educational videos and past questions: https://youtube.com/@allcbts
Summary: Key Concepts Covered
- How to solve determinant-based equations.
- Working with surds like 2\sqrt{2}2 in algebra.
- Rationalizing complex denominators using conjugates.
- Expanding and simplifying binomial squares involving imaginary numbers.
Related Videos:
- Understanding Waves and Properties in Physics
- Top IJMB Chemistry Questions with Answers
- NECO Government 2025 Likely Questions and Answers
- NECO Chemistry Questions and Answers for 2025
- IJMB Mathematics Past Questions for 2025
Keywords for SEO Visibility
#JUPEBMath2025, #Determinants, #ComplexNumbers, #SurdsInMath, #AllCBTs, #JUPEBTutorial, #MathsPastQuestions, #JUPEBRevision, #HowToSolveDeterminants, #ImaginaryNumbers, #MathTricksJUPEB, #ExamSuccessTips