Welcome to today’s tutorial! In this post, we break down some of the top SAT Mathematics questions, offering clear step-by-step solutions. These problems focus on algebra, trigonometry, and quadratic equations—core areas tested in every SAT exam.
You can watch the full class in the video below:
Question 1: Solving Simultaneous Equations
Given: 3x+2y=12(1)2x−y=4(2)3x + 2y = 12 \quad \text{(1)} \\ 2x – y = 4 \quad \text{(2)}3x+2y=12(1)2x−y=4(2)
Find: x+yx + yx+y
Step-by-Step Solution:
We’ll use the elimination method to solve for xxx and yyy.
First, multiply equation (2) by 2: 4x−2y=8(3)4x – 2y = 8 \quad \text{(3)}4x−2y=8(3)
Now add equation (1) and equation (3): (3x+2y)+(4x−2y)=12+8⇒7x=20⇒x=207(3x + 2y) + (4x – 2y) = 12 + 8 \Rightarrow 7x = 20 \Rightarrow x = \frac{20}{7}(3x+2y)+(4x−2y)=12+8⇒7x=20⇒x=720
Substitute x=207x = \frac{20}{7}x=720 back into equation (1): 3(207)+2y=12⇒607+2y=12⇒2y=247⇒y=1273\left(\frac{20}{7}\right) + 2y = 12 \Rightarrow \frac{60}{7} + 2y = 12 \Rightarrow 2y = \frac{24}{7} \Rightarrow y = \frac{12}{7}3(720)+2y=12⇒760+2y=12⇒2y=724⇒y=712
Now add x+yx + yx+y: 207+127=327≈4.57\frac{20}{7} + \frac{12}{7} = \frac{32}{7} \approx 4.57720+712=732≈4.57
Answer: Approximately 5
Question 2: Identifying a Quadratic Equation from Roots
Given Roots:
x=−2x = -2x=−2 and x=5x = 5x=5
Solution:
From the roots, we form: (x+2)(x−5)⇒f(x)=(x+2)(x−5)(x + 2)(x – 5) \Rightarrow f(x) = (x + 2)(x – 5)(x+2)(x−5)⇒f(x)=(x+2)(x−5)
This is the required quadratic function.
Answer: f(x)=(x+2)(x−5)f(x) = (x + 2)(x – 5)f(x)=(x+2)(x−5)
Question 3: Trigonometry in Right Triangles
Given: sin(θ)=35,θ in the first quadrant\sin(\theta) = \frac{3}{5}, \quad \theta \text{ in the first quadrant}sin(θ)=53,θ in the first quadrant
Solution:
Use the identity: sin2(θ)+cos2(θ)=1⇒(35)2+cos2(θ)=1⇒925+cos2(θ)=1⇒cos2(θ)=1625⇒cos(θ)=45\sin^2(\theta) + \cos^2(\theta) = 1 \Rightarrow \left(\frac{3}{5}\right)^2 + \cos^2(\theta) = 1 \Rightarrow \frac{9}{25} + \cos^2(\theta) = 1 \Rightarrow \cos^2(\theta) = \frac{16}{25} \Rightarrow \cos(\theta) = \frac{4}{5}sin2(θ)+cos2(θ)=1⇒(53)2+cos2(θ)=1⇒259+cos2(θ)=1⇒cos2(θ)=2516⇒cos(θ)=54
Answer: cos(θ)=45\cos(\theta) = \frac{4}{5}cos(θ)=54
Watch more educational videos and past questions: https://youtube.com/@allcbts
SEO Description:
Master SAT Math with detailed solutions to algebraic equations, quadratic functions, and trigonometry. Ace your 2025/2026 SAT Math with confidence.
Related Videos:
- Understanding Waves and Properties in Physics
- JAMB 2026 Mathematics Questions
- JAMB 2026 Mathematics Questions and Solutions
- GAOKAO Mathematics 2025 Questions
- NECO Physics 2025 Solved Past Questions
Keywords:
- SAT math 2025 questions
- SAT algebra solutions
- SAT trigonometry examples
- Solve simultaneous equations SAT
- SAT quadratic equations
Comment (1)